THE TERRORIST'S HANDBOOK ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 1.0 INTRODUCTION Gunzenbomz Pyro-Technologies, a division of Chaos Industries (CHAOS), is proud to present this first edition of The Terrorist's Handbook. First and foremost, let it be stated that Chaos Industries assumes no responsibilities for any misuse of the information presented in this publication. The purpose of this is to show the many techniques and methods used by those people in this and other countries who employ terror as a means to political and social goals. The techniques herein can be obtained from public libraries, and can usually be carried out by a terrorist with minimal equipment. This makes one all the more frightened, since any lunatic or social deviant could obtain this information, and use it against anyone. The processes and techniques herein SHOULD NOT BE CARRIED OUT UNDER ANY CIRCUMSTANCES!! SERIOUS HARM OR DEATH COULD OCCUR FROM ATTEMPTING TO PERFORM ANY OF THE METHODS IN THIS PUBLICATION. THIS IS MERELY FOR READING ENJOYMENT, AND IS NOT INTENDED FOR ACTUAL USE!! 1.1 Table of Contents ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2.0 ....... BUYING EXPLOSIVES AND PROPELLANTS 2.01 ........ Black Powder 2.02 ........ Pyrodex 2.03 ........ Rocket Engine Powder 2.04 ........ Rifle/Shotgun Powder 2.05 ........ Flash Powder 2.06 ........ Ammonium Nitrate 2.1 ....... ACQUIRING CHEMICALS 2.11 ........ Techniques for Picking Locks 2.2 ....... LIST OF USEFUL HOUSEHOLD CHEMICALS AND AVAILABILITY 2.3 ....... PREPARATION OF CHEMICALS 2.31 ........ Nitric Acid 2.32 ........ Sulfuric Acid 2.33 ........ Ammonium Nitrate 3.0 ....... EXPLOSIVE RECIPES 3.01 ........ Explosive Theory 3.1 ....... IMPACT EXPLOSIVES 3.11 ........ Ammonium Triiodide Crystals 3.12 ........ Mercury Fulminate 3.13 ........ Nitroglycerine 3.14 ........ Picrates 3.2 ....... LOW ORDER EXPLOSIVES 3.21 ........ Black Powder 3.22 ........ Nitrocellulose 3.23 ........ Fuel + Oxodizer mixtures 3.24 ........ Perchlorates 3.3 ....... HIGH ORDER EXPLOSIVES 3.31 ........ R.D.X. (Cyclonite) 3.32 ........ Ammonium Nitrate 3.33 ........ ANFOS 3.34 ........ T.N.T. 3.35 ........ Potassium Chlorate 3.36 ........ Dynamite 3.37 ........ Nitrostarch Explosives 3.38 ........ Picric Acid 3.39 ........ Ammonium Picrate (Explosive D) 3.40 ........ Nitrogen Trichloride 3.41 ........ Lead Azide 3.5 ....... OTHER "EXPLOSIVES" 3.51 ........ Thermit 3.52 ........ Molotov Cocktails 3.53 ........ Chemical Fire Bottle 3.54 ........ Bottled Gas Explosives 4.0 ....... USING EXPLOSIVES 4.1 ....... SAFETY 4.2 ....... IGNITION DEVICES 4.21 ........ Fuse Ignition 4.22 ........ Impact Ignition 4.23 ........ Electrical Ignition 4.24 ........ Electro - Mechanical Ignition 4.241 ....... Mercury Switches 4.242 ....... Tripwire Switches 4.243 ....... Radio Control Detonators 4.3 ....... DELAYS 4.31 ........ Fuse Delays 4.32 ........ Timer Delays 4.33 ........ Chemical Delays 4.4 ....... EXPLOSIVE CONTAINERS 4.41 ........ Paper Containers 4.42 ........ Metal Containers 4.43 ........ Glass Containers 4.44 ........ Plastic Containers 4.5 ....... ADVANCED USES FOR EXPLOSIVES 4.51 ........ Shaped Charges 4.52 ........ Tube Explosives 4.53 ........ Atomized Particle Explosions 4.54 ........ Lightbulb Bombs 4.55 ........ Book Bombs 4.56 ........ Phone Bombs 5.0 ....... SPECIAL AMMUNITION FOR PROJECTILE WEAPONS 5.1 ....... PROJECTILE WEAPONS (PRIMITIVE) 5.11 ........ Bow and Crossbow Ammunition 5.12 ........ Blowgun Ammunition 5.13 ........ Wrist Rocket and Slingshot Ammunition 5.2 ....... PROJECTILE WEAPONS (FIREARMS) 5.21 ........ Handgun Ammunition 5.22 ........ Shotguns 5.3 ....... PROJECTILE WEAPONS (COMPRESSED GAS) 5.31 ........ .177 Caliber B.B Gun Ammunition 5.32 ........ .22 Caliber Pellet Gun Ammunition 6.0 ....... ROCKETS AND CANNONS 6.1 ....... ROCKETS 6.11 ........ Basic Rocket-Bomb 6.12 ........ Long Range Rocket-Bomb 6.13 ........ Multiple Warhead Rocket-Bombs 6.2 ........ CANNONS 6.21 ........ Basic Pipe Cannon 6.22 ........ Rocket-Firing Cannon 7.0 ....... PYROTECHNICA ERRATA 7.1 ......... Smoke Bombs 7.2 ......... Colored Flames 7.3 ......... Tear Gas 7.4 ......... Fireworks 7.41 ........ Firecrackers 7.42 ........ Skyrockets 7.43 ........ Roman Candles 8.0 ....... LISTS OF SUPPLIERS AND FURTHER INFORMATION 9.0 ....... CHECKLIST FOR RAIDS ON LABS 10.0 ...... USEFUL PYROCHEMISTRY 2.0 BUYING EXPLOSIVES AND PROPELLANTS Almost any city or town of reasonable size has a gun store and a pharmacy. These are two of the places that potential terrorists visit in order to purchase explosive material. All that one has to do is know something about the non-explosive uses of the materials. Black powder, for example, is used in blackpowder firearms. It comes in varying "grades", with each different grade being a slightly different size. The grade of black powder depends on what the calibre of the gun that it is used in; a fine grade of powder could burn too fast in the wrong caliber weapon. The rule is: the smaller the grade, the faster the burn rate of the powder. 2.01 BLACK POWDER Black powder is generally available in three grades. As stated before, the smaller the grade, the faster the powder burns. Burn rate is extremely important in bombs. Since an explosion is a rapid increase of gas volume in a confined environment, to make an explosion, a quick-burning powder is desirable. The three common grades of black powder are listed below, along with the usual bore width (calibre) of what they are used in. Generally, the fastest burning powder, the FFF grade is desirable. However, the other grades and uses are listed below: GRADE BORE WIDTH EXAMPLE OF GUN ÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ F .50 or greater model cannon; some rifles FF .36 - .50 large pistols; small rifles FFF .36 or smaller pistols; derringers The FFF grade is the fastest burning, because the smaller grade has more surface area or burning surface exposed to the flame front. The larger grades also have uses which will be discussed later. The price range of black powder, per pound, is about $8.50 - $9.00. The price is not affected by the grade, and so one saves oneself time and work if one buys the finer grade of powder. The major problems with black powder are that it can be ignited accidentally by static electricity, and that it has a tendency to absorb moisture from the air. To safely crush it, a bomber would use a plastic spoon and a wooden salad bowl. Taking a small pile at a time, he or she would apply pressure to the powder through the spoon and rub it in a series of strokes or circles, but not too hard. It is fine enough to use when it is about as fine as flour. The fineness, however, is dependant on what type of device one wishes to make; obviously, it would be impracticle to crush enough powder to fill a 1 foot by 4 inch radius pipe. Anyone can purchase black powder, since anyone can own black powder firearms in America. 2.02 PYRODEX Pyrodex is a synthetic powder that is used like black powder. It comes in the same grades, but it is more expensive per pound. However, a one pound container of pyrodex contains more material by volume than a pound of black powder. It is much easier to crush to a very fine powder than black powder, and it is considerably safer and more reliable. This is because it will not be set off by static electricity, as black can be, and it is less inclined to absorb moisture. It costs about $10.00 per pound. It can be crushed in the same manner as black powder, or it can be dissolved in boiling water and dried. 2.03 ROCKET ENGINE POWDER One of the most exciting hobbies nowadays is model rocketry. Estes is the largest producer of model rocket kits and engines. Rocket engines are composed of a single large grain of propellant. This grain is surrounded by a fairly heavy cardboard tubing. One gets the propellant by slitting the tube lengthwise, and unwrapping it like a paper towel roll. When this is done, the grey fire clay at either end of the propellant grain must be removed. This is usually done gently with a plastic or brass knife. The material is exceptionally hard, and must be crushed to be used. By gripping the grain on the widest setting on a set of pliers, and putting the grain and powder in a plastic bag, the powder will not break apart and shatter all over. This should be done to all the large chunks of powder, and then it should be crushed like black powder. Rocket engines come in various sizes, ranging from 1/4 A - 2T to the incredibly powerful D engines. The larger the engine, the more expensive. D engines come in packages of three, and cost about $5.00 per package. Rocket engines are perhaps the single most useful item sold in stores to a terrorist, since they can be used as is, or can be cannibalized for their explosive powder. 2.04 RIFLE/SHOTGUN POWDER Rifle powder and shotgun powder are really the same from a practicle standpoint. They are both nitrocellulose based propellants. They will be referred to as gunpowder in all future references. Gunpowder is made by the action of concentrated nitric and sulfuric acid upon cotton. This material is then dissolved by solvents and then reformed in the desired grain size. When dealing with gunpowder, the grain size is not nearly as important as that of black powder. Both large and small grained gunpowder burn fairly slowly compared to black powder when unconfined, but when it is confined, gunpowder burns both hotter and with more gaseous expansion, producing more pressure. Therefore, the grinding process that is often necessary for other propellants is not necessary for gunpowder. Gunpowder costs about $9.00 per pound. Any idiot can buy it, since there are no restrictions on rifles or shotguns in the U.S. 2.05 FLASH POWDER Flash powder is a mixture of powdered zirconium metal and various oxidizers. It is extremely sensitive to heat or sparks, and should be treated with more care than black powder, with which it should NEVER be mixed. It is sold in small containers which must be mixed and shaken before use. It is very finely powdered, and is available in three speeds: fast, medium, and slow. The fast flash powder is the best for using in explosives or detonators. It burns very rapidly, regardless of confinement or packing, with a hot white "flash", hence its name. It is fairly expensive, costing about $11.00. It is sold in magic shops and theatre supply stores. 2.06 AMMONIUM NITRATE Ammonium nitrate is a high explosive material that is often used as a commercial "safety explosive" It is very stable, and is difficult to ignite with a match. It will only light if the glowing, red-hot part of a match is touching it. It is also difficult to detonate; (the phenomenon of detonation will be explained later) it requires a large shockwave to cause it to go high explosive. Commercially, it is sometimes mixed with a small amount of nitroglycerine to increase its sensitivity. Ammonium nitrate is used in the "Cold-Paks" or "Instant Cold", available in most drug stores. The "Cold Paks" consist of a bag of water, surrounded by a second plastic bag containing the ammonium nitrate. To get the ammonium nitrate, simply cut off the top of the outside bag, remove the plastic bag of water, and save the ammonium nitrate in a well sealed, airtight container, since it is rather hydroscopic, i.e. it tends to absorb water from the air. It is also the main ingredient in many fertilizers. 2.1 ACQUIRING CHEMICALS The first section deals with getting chemicals legally. This section deals with "procuring" them. The best place to steal chemicals is a college. Many state schools have all of their chemicals out on the shelves in the labs, and more in their chemical stockrooms. Evening is the best time to enter lab buildings, as there are the least number of people in the buildings, and most of the labs will still be unlocked. One simply takes a bookbag, wears a dress shirt and jeans, and tries to resemble a college freshman. If anyone asks what such a person is doing, the thief can simply say that he is looking for the polymer chemistry lab, or some other chemistry-related department other than the one they are in. One can usually find out where the various labs and departments in a building are by calling the university. There are, of course other techniques for getting into labs after hours, such as placing a piece of cardboard in the latch of an unused door, such as a back exit. Then, all one needs to do is come back at a later hour. Also, before this is done, terrorists check for security systems. If one just walks into a lab, even if there is someone there, and walks out the back exit, and slip the cardboard in the latch before the door closes, the person in the lab will never know what happened. It is also a good idea to observe the building that one plans to rob at the time that one plans to rob it several days before the actual theft is done. This is advisable since the would-be thief should know when and if the campus security makes patrols through buildings. Of course, if none of these methods are successful, there is always section 2.11, but as a rule, college campus security is pretty poor, and nobody suspects another person in the building of doing anything wrong, even if they are there at an odd hour. 2.11 TECHNIQUES FOR PICKING LOCKS If it becomes necessary to pick a lock to enter a lab, the world's most effective lockpick is dynamite, followed by a sledgehammer. There are unfortunately, problems with noise and excess structural damage with these methods. The next best thing, however, is a set of army issue lockpicks. These, unfortunately, are difficult to acquire. If the door to a lab is locked, but the deadbolt is not engaged, then there are other possibilities. The rule here is: if one can see the latch, one can open the door. There are several devices which facilitate freeing the latch from its hole in the wall. Dental tools, stiff wire ( 20 gauge ), specially bent aluminum from cans, thin pocket- knives, and credit cards are the tools of the trade. The way that all these tools and devices are uses is similar: pull, push, or otherwise move the latch out of its hole in the wall, and pull the door open. This is done by sliding whatever tool that you are using behind the latch, and pulling the latch out from the wall. To make an aluminum-can lockpick, terrorists can use an aluminum can and carefully cut off the can top and bottom. Cut off the cans' ragged ends. Then, cut the open-ended cylinder so that it can be flattened out into a single long rectangle. This should then be cut into inch wide strips. Fold the strips in 1/4 inch increments (1). One will have a long quadruple-thick 1/4 inch wide strip of aluminum. This should be folded into an L-shape, a J-shape, or a U-shape. This is done by folding. The pieces would look like this: (1) _________________________________________________________ v 1/4 |_______________________________________________________| | 1/4 |_______________________________________________________| | 1 inch 1/4 |_______________________________________________________| | 1/4 |_______________________________________________________| | ^ Fold along lines to make a single quadruple-thick piece of aluminum. This should then be folded to produce an L,J,or U shaped device that looks like this: __________________________________________ / ________________________________________| | | | | L-shaped | | | | |_| _____________________________ / ___________________________| | | | | J-shaped | | | |________ \________| _____________________ / ___________________| | | | | | | U-shaped | | | |____________________ \____________________| All of these devices should be used to hook the latch of a door and pull the latch out of its hole. The folds in the lockpicks will be between the door and the wall, and so the device will not unfold, if it is made properly. 2.2 LIST OF USEFUL HOUSEHOLD CHEMICALS AND THEIR AVAILABILITY Anyone can get many chemicals from hardware stores, supermarkets, and drug stores to get the materials to make explosives or other dangerous compounds. A would-be terrorist would merely need a station wagon and some money to acquire many of the chemicals named here. Chemical Used In Available at _____________________________________________________________________________ alcohol, ethyl * alcoholic beverages liquor stores solvents (95% min. for both) hardware stores _____________________________________________________________________________ ammonia + CLEAR household ammonia supermarkets/7-eleven _____________________________________________________________________________ ammonium instant-cold paks, drug stores, nitrate fertilizers medical supply stores _____________________________________________________________________________ nitrous oxide pressurizing whip cream party supply stores _____________________________________________________________________________ magnesium firestarters surplus/camping stores ____________________________________________________________________________ lecithin vitamins pharmacies/drug stores _____________________________________________________________________________ mineral oil cooking, laxative supermarket/drug stores _____________________________________________________________________________ mercury @ mercury thermometers supermarkets/hardware stores _____________________________________________________________________________ sulfuric acid uncharged car batteries automotive stores _____________________________________________________________________________ glycerine ? pharmacies/drug stores _____________________________________________________________________________ sulfur gardening gardening/hardware store _____________________________________________________________________________ charcoal charcoal grills supermarkets/gardening stores _____________________________________________________________________________ sodium nitrate fertilizer gardening store _____________________________________________________________________________ cellulose (cotton) first aid drug/medical supply stores _____________________________________________________________________________ strontium nitrate road flares surplus/auto stores, _____________________________________________________________________________ fuel oil kerosene stoves surplus/camping stores, _____________________________________________________________________________ bottled gas propane stoves surplus/camping stores, _____________________________________________________________________________ potassium permanganate water purification purification plants _____________________________________________________________________________ hexamine or hexamine stoves surplus/camping stores methenamine (camping) _____________________________________________________________________________ nitric acid ^ cleaning printing printing shops plates photography stores _____________________________________________________________________________ iodine & first aid drug stores _____________________________________________________________________________ sodium perchlorate solidox pellets hardware stores for cutting torches _____________________________________________________________________________ notes: * ethyl alcohol is mixed with methyl alcohol when it is used as a solvent. Methyl alcohol is very poisonous. Solvent alcohol must be at least 95% ethyl alcohol if it is used to make mercury fulminate. Methyl alcohol may prevent mercury fulminate from forming. + Ammonia, when bought in stores comes in a variety of forms. The pine and cloudy ammonias should not be bought; only the clear ammonia should be used to make ammonium triiodide crystals. @ Mercury thermometers are becoming a rarity, unfortunately. They may be hard to find in most stores. Mercury is also used in mercury switches, which are available at electronics stores. Mercury is a hazardous substance, and should be kept in the thermometer or mercury switch until used. It gives off mercury vapors which will cause brain damage if inhaled. For this reason, it is a good idea not to spill mercury, and to always use it outdoors. Also, do not get it in an open cut; rubber gloves will help prevent this. ^ Nitric acid is very difficult to find nowadays. It is usually stolen by bomb makers, or made by the process described in a later section. A desired concentration for making explosives about 70%. & The iodine sold in drug stores is usually not the pure crystaline form that is desired for producing ammonium triiodide crystals. To obtain the pure form, it must usually be acquired by a doctor's prescription, but this can be expensive. Once again, theft is the means that terrorists result to. 2.3 PREPARATION OF CHEMICALS 2.31 NITRIC ACID There are several ways to make this most essential of all acids for explosives. One method by which it could be made will be presented. Once again, be reminded that these methods SHOULD NOT BE CARRIED OUT!! Materials: Equipment: ÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄ sodium nitrate or adjustable heat source potassium nitrate retort distilled water ice bath concentrated sulfuric acid stirring rod collecting flask with stopper 1) Pour 32 milliliters of concentrated sulfuric acid into the retort. 2) Carefully weigh out 58 grams of sodium nitrate, or 68 grams of potassium nitrate. and add this to the acid slowly. If it all does not dissolve, carefully stir the solution with a glass rod until it does. 3) Place the open end of the retort into the collecting flask, and place the collecting flask in the ice bath. 4) Begin heating the retort, using low heat. Continue heating until liquid begins to come out of the end of the retort. The liquid that forms is nitric acid. Heat until the precipitate in the bottom of the retort is almost dry, or until no more nitric acid is forming. CAUTION: If the acid is headed too strongly, the nitric acid will decompose as soon as it is formed. This can result in the production of highly flammable and toxic gasses that may explode. It is a good idea to set the above apparatus up, and then get away from it. Potassium nitrate could also be obtained from store-bought black powder, simply by dissolving black powder in boiling water and filtering out the sulfur and charcoal. To obtain 68 g of potassium nitrate, it would be necessary to dissolve about 90 g of black powder in about one litre of boiling water. Filter the dissolved solution through filter paper in a funnel into a jar until the liquid that pours through is clear. The charcoal and sulfur in black powder are insoluble in water, and so when the solution of water is allowed to evaporate, potassium nitrate will be left in the jar. 2.32 SULFURIC ACID Sulfuric acid is far too difficult to make outside of a laboratory or industrial plant. However, it is readily available in an uncharged car battery. A person wishing to make sulfuric acid would simply remove the top of a car battery and pour the acid into a glass container. There would probably be pieces of lead from the battery in the acid which would have to be removed, either by boiling or filtration. The concentration of the sulfuric acid can also be increased by boiling it; very pure sulfuric acid pours slightly faster than clean motor oil. 2.33 AMMONIUM NITRATE Ammonium nitrate is a very powerful but insensitive high-order explosive. It could be made very easily by pouring nitric acid into a large flask in an ice bath. Then, by simply pouring household ammonia into the flask and running away, ammonium nitrate would be formed. After the materials have stopped reacting, one would simply have to leave the solution in a warm place until all of the water and any unneutralized ammonia or acid have evaporated. There would be a fine powder formed, which would be ammonium nitrate. It must be kept in an airtight container, because of its tendency to pick up water from the air. The crystals formed in the above process would have to be heated VERY gently to drive off the remaining water.